$O(^{3}P)$ + NO 反应的交叉束化学发光

解笑湘 张黎明 邱元武 刘颂豪 (中国科学院安徽光学精密机械研究所)

提 要

用交叉分子束技术观察了 $O({}^{\circ}P)$ +NO--->NO₂+ $h\nu$ 基元反应的化学发光。基态氧原子是由 O₂ 分子 经微波放电产生的。获得了在 4000~9000 Å 波段内的连续光谱,发光总强度与 NO 分子的流量成线性关 系。假使反应服从绝热相关原理,则化学发光主要来自 NO₂ 的 ${}^{2}B_{1} \rightarrow {}^{2}A_{1}$ 跃迁。这一结果与 Grangi^[14]等 的理论估计是一致的。

一、引 言

氧原子与一氧化氮反应的化学发光就是人们常见的灰绿色"空气余辉"^[1]。这一反应在 同温层化学以及火箭发动机的燃烧过程中起着重要的作用。不仅如此,人们还把这一反应 的速率作为确定其它化学发光反应速率的标准^[2,8]。因此,很多年来,人们采用各种方法研 究了这个反应,其中主要的是用流动法研究低气压下的两体复合反应^[2~6]:

$$O + NO \longrightarrow NO_2 + h\nu \tag{1}$$

和三体复合反应[1,7~9]:

$$O + NO + M \longrightarrow NO_2 + M + h\nu_{o}$$
⁽²⁾

通过这些实验都在可见区观察到连续的化学发光光谱。

自 1973 年来, Ibaraki 等¹¹⁰¹ 和 Kasai 等¹¹¹¹ 用交叉分子束研究了反应(1)。前者在室温 下没有观察到 O+NO 反应的化学发光, 而是观察到 O 与 NO 的二聚物 N₂O₂ 反应的化学发 光。后者首次观察到室温下 O+NO 反应的交叉束化学发光。

我们用分子束装置研究了同一反应,得到了一些新的结果。

二、实验装置

图1为实验装置示意图。分子束的真空室由低温泵抽真空,低温泵冷头的温度可达 14K。实验前的真空度为3×10⁻⁸Torr,当分子束喷入室内时,真空度在3×10⁻⁵~1×10⁻⁴ Torr 之间。

氧原子是由一定比例的 O₂ 和 Ar 气的混合物经微波放电产生的。O₂ 气的纯度为 97%, Ar 气的纯度为 99.99%, 上述两种气体均未经进一步纯化而直接使用。

微波发生器的频率为 2450 MHz, 功率可在 0~200 W 之间变化。石英放电管 ϕ 12 mm

收稿日期: 1983年6月24日; 收到修改稿日期: 1983年12月16日

收到的信号。为了减小光电倍增管的暗电流和噪声,用致冷器将其冷却到 -50°C。在测量 光谱时,单色仪的入射和出射狭缝均为 600 μm。

三、实验结果

O₂和 Ar 的混合气体在微波放电区的下游产生黄绿色的余辉。虽然采取了消光措施,仍有微量的余辉进入反应区。但是经单色仪分光后,其信号和未放电时的本底无明显变化。

氧气经微波放电后主要产生基态 $O({}^{3}P)$ 原子^{LIT}。在我们的实验 条件下, $P_{0}d < 10$ Torr·cm(P_{0} 为分 子束管内的气压, d 为分子 束喷口 直径),所以二聚物 $N_{2}O_{2}$ 的浓度小 于 1%,可以忽略 $N_{2}O_{2}$ 对交叉束反 应的影响。因此,我们研究的反应 可以确定为基态 $O({}^{3}P)$ 和 $NO({}^{2}D)$ 的基元反应。

图2表示观察到的化学发光光 谱。在单色仪分辨率约为30Å时, 观察到一条无结构的连续光谱。经 波长响应修正后,最大光强在 7500Å左右,约有1700photon/sec。 我们得到的光谱与流动系统中二体 反应的化学发光光谱^[6]大致相同,

* SCOM 是 Standard Cubic Centimeter per Minute 的缩写, 标准条件定义为 20°C 和 760 毫米汞柱。

的杂散光。整个石英管外壁均

涂黑漆。氧原子束喷口φ2mm, 喷口距反应区中心8mm。

酸的反应制备的, 经纯化后直

接使用。NO分子束喷口为 φ0.8mm,喷口距反应中心

15mm。所有的气体均用流量

两个透镜聚焦在D300型双棱

镜单色仪的狭缝上,用光电倍

增管接收分光后的信号。光子

计数器和 X-Y 记录仪记录接

反应中心的化学发光经过

计测量其流量。

NO 气体是通过铜和稀 硝

经过两个直角转弯伸进真空室,每个转变处带有一个伍德角,以减少进入反应区的微波放电

图 3 化学发光总光强与 NO 流量的关系 Fig. 3 Relation between total chemiluminescence intensities and the flux of NO molecules 正比的关系(见图 3)。在扩散束的条件下,喷出气体 的空间分布随流量的变化改变不大,因此流量和散射 区的数密度近似为线性关系^[11]。化学发光总光强与 NO 数密度的线性关系说明了在我们的实验条件下, O(³*P*)和NO(²Π)的反应是二体复合反应。

四、讨 论

NO₂ 有 17 个价电子, 属于 C₂₇ 点群。它的电子组态如下^[12,13]:

$\cdots (4b_2)^2 (6a_1)^2$	${}^{2}A_{1}(\widetilde{x})$
$\cdots (4b_2)^2 (2b_1)$	${}^{2}B_1(\widetilde{A})$
$\cdots (4b_2) (6a_1)^2$	${}^{2}\!B_2(\widetilde{B})$
$\cdots \left(4 b_2\right) \left(6 a_1\right) \left(2 b_1\right)$	${}^{4}A_{2}$

其中 ${}^{4}A_{2}$ 态是由 C_{2v} 群的不可约表示 b_{2} , a_{2} 和 b_{1} 的直 积产生的。根据 Grangi 和 Burnelle 的计算⁽¹⁴⁾, 在基

态平衡组态的条件下, ${}^{2}A_{1}$, ${}^{2}B_{2}$, ${}^{4}A_{2}$ 态的激发能分别为0, 1.75, 3.33和3.43 eV。

图 4 有关的反应物和产物的绝热相关图

Fig. 4 Adiabatic correlation diagram for related reactants and products

(a) Correlation diagram for reactants and states of linear NO_2 molecule. The correlative states of bent and linear NO_2 molecule are given in parentheses; (b) Adiabatic correlation diagram for chemical reaction

Burnelle 等^[15] 利用 Wigner-Witmer 规则,分析了线性 NO₂ 分子态 与O(³*P*)+NO(³*II*) 和 O(¹*D*)+NO(²*II*) 的相关特性。如图 4(*a*) 所示,基态 O(³*P*) 的反应可产生 ²*II*₄, ⁴*II*₉ 和 ² Σ_{g}^{+} 等电子态的线性 NO₂ 分子,而 ²*II*₄ 态又可分解为弯曲 NO₂ 分子的 ²*A*₁ 和 ²*B*₁ 态。同理, ⁴*II*₉ 可分解为 ⁴*A*₂ 和 ⁴*B*₂ 态等等。激发态 O(¹*D*) 的反应与多个弯曲 NO₂ 分子的 ²*A*₂ 和 ²*B*₃ 相态关。假定这一反应服从绝热相关原理,我们可以画出化学反应的绝热相关图,如图 4(*b*) 所示。其中基态 O(³*P*)的反应以 ¹*A*' 的对称性与 NO₂ 的 ²*A*₁ 态相关,以 ²*A*'' 的对称性与 ²*B*₁

Ar: 14.3 SCCM, O₂: 24.3 SCCM Microwave power: 50 W

态相关等等 (A' 和 A'' 是 C_{a} 点群的不可约表示)。 由图可见, 基态 O(${}^{a}P$)的反应并不产生 NO₂ 的 ${}^{a}B_{2}$ 态。图 5 为 NO₂ 分子在 LONO=184.25° 时势能随 ON—O 键长变化的势 能 曲 线示意图。

在 NO₂ 分子 中, ${}^{2}B_{1} \rightarrow {}^{2}A_{1}$ 和 ${}^{2}B_{2} \rightarrow {}^{2}A_{1}$ 的 跃迁 都是允许的跃迁。根据图5的势能曲线可以认为, 我们得到的化学发光主要是来自 NO₂ 的 ${}^{2}B_{1} \rightarrow {}^{2}A_{1}$ 的跃迁。这一结论与 Grangi 和 Burnelle 的计算结 果是一致的。他们的计算表明^[14,15],²B₁→²A₁ 跃迁的 垂直激发能为1.75eV(7100Å),由Franck-Condon 原理可见,发光最强波段应在7100 Å 附近。我们的 实验观察证实了这一点, 而 ${}^{2}B_{2} \rightarrow {}^{2}A_{1}$ 的跃迁为 3.33 eV(3730 Å)。由于 $^{2}B_{2}$ 态与基态氧的反应不相关, 可以认为这一跃迁对化学发光的贡献较小。但是, Kasai 等[11] 认为这个反应的交叉束化学发光主要是 ${}^{2}B_{2} \rightarrow {}^{2}A_{1}$ 的跃迁。他们是根据 NO₂ 分子的 激光激 发荧光光谱和激光诱导荧光光谱的实验结果得出这 一结论的。由于 NO₂ 分子的 ${}^{2}B_{2} \rightarrow {}^{2}A_{1}$ 和 ${}^{2}B_{1} \rightarrow {}^{2}A_{1}$ 的跃迁均为允许跃迁, NO₂ 的荧光来自 ${}^{2}B_{2} \rightarrow {}^{2}A_{1}$ 跃 迁,并不能说明 NO₂ 的化学发光也是来自 ${}^{2}B_{2} \rightarrow {}^{2}A_{1}$ 跃迁。 再者, ${}^{2}B_{2} \rightarrow {}^{2}A_{1}$ 的跃迁应使测到的光谱在

图 5 NO₂ 势能随 ON—O 键长的变化规律 Fig. 5 Postulated potential-energy curves as a function of ON—O bond distance at LONO=134.25°, r_o is the equilibrium bond distance of the ground state. The ⁴B₂ and ²A₂ states have been omitted

8730 Å 附近有一个较强的峰,在实验中,我们并没有观察到这一现象。实验结果表明,用绝热相关原理可以解释 ${}^{2}B_{2} \rightarrow {}^{2}A_{1}$ 的跃迁对化学发光有较小的贡献,而主要的发光产物为 ${}^{2}B_{1}$ 态的 NO₂ 分子。

根据分子的对称性可以判断, NO₂ 分子中 ${}^{2}B_{2} \rightarrow {}^{2}B_{1}$ 的跃迁是禁戒的^[12]。因此 ${}^{2}B_{1}$ 态通 过无辐射跃迁转变为 ${}^{2}B_{2}$ 态的几率很小。NO₂ 分子离解成基态 O 原子和 NO 分子的离解能 为 $3.114 \text{ eV}^{[16]}$ 。 O 与 NO 反应放出的热量为 $71.2 \text{ kcal/mol}(3.09 \text{ eV})^{[4]}$ 。 化学反应发生 后,产物 NO₂ 被激发到 ${}^{2}B_{1}$ 态的高振动激发能级上,接近离解极限。由于近离解极限区内振 动能级密度很大,因此,实验观察到的是连续光谱。

王乃光同志参加了部分实验工作。本工作还得到了徐绍绩、许世鹏和詹明生同志的大 力协助,特此表示感谢。

参考文献

- [1] F. Kaufman; Proc. Roy. Soc., 1958, A247, No. 1248 (Sep), 123.
- [2] A. Fontijn, et al.; J. Chem. Phys., 1964, 40, No. 1 (Jan), 64.
- [3] M. Sutoh, et al.; J. Chem. Phys., 1980, 72, No. 1 (Jan), 20.
- [4] H. P. Broida, et al.; Trans. Faraday Soc., 1961, 57, No. 458 (Feb), 259.
- [5] R. R. Reeves, et al.; J. Chem. Phys., 1964, 41, No. 3 (Aug), 764.
- [6] D. E. Paulsen, et al.; J. Chem. Phys., 1970, 53, No. 2 (Jul), 647.
- [7] M. A. A. Olyne and B. A. Thrush; Proc. Roy. Soc., 1962, A269, No. 1338 (Sep), 404.

- [8] G. Doherty and N. Jonathan; Discuss. Faraday Soc., 1964, No. 37 (Apr), 73.
- [9] N. Jonathan and B. Petty; Trans. Faraday Soc., 1968, 64, No. 545 (May), 1240
- [10] T. Ibaraki, et al.; J. Phys. Chem., 1975, 79, No. 2 (Jan), 95.
- [11] T. Kasai et al.; Chem. Phys. Lett., 1978, 56. No. 1 (May), 84.
- [12] P. A. Gorry and B. Grice; J. Phys. E: Sci. Instrum., 1979, 12, No. 9 (Sep), 857.
- [13] G. Herzberg; "Molecular Spectra and Molecular Structure", Vol. 3, (D. Van Nostrand Company, Inc., New York, 1966), 507.
- [14] B. Di Bartolo; "Spectroscopy of the Excited State", (Plenum Press, New York and London, 1976), 47.
- [15] R. A. Grangi and L. Burnelle; J. Chem. Phys., 1971, 55, No. 2 (Jul), 843, 851.
- [16] L. Burnelle, et al.; J. Chem. Phys., 1968, 49, No. 2 (Jul), 561.

[17] A. E. Douglas and K. P. Huber; Can. J. Phys., 1965, 43, No. 1 (Jan), 74.

Crossed beam chemiluminescence of $O({}^{3}P) + NO$ reaction

XIE XIAOXIANG ZHANG LIMING' QIU YUANWU AND LIU SONGHAO

(Anhui Institute of Optics and Fine Mechanics, Academia Sinica)

나는 문서 가지 않는

(Received 24 June 1988; revised 16 December 1983)

Abstract

The crossed beam chemiluminescence of $O({}^{3}P)+NO \longrightarrow NO_{2}+h\nu$ elementary reaction has been observed. The ground state oxygen atoms are produced by a microwave discharge in O₂. Continuous spectra in the 4000~9000'Å region have been obtained. Dependence of the emission intensities on the NO flux is linear. Assuming the reaction obeys adiabatic correlation, the chemiluminescence should be due mainly to the transition ${}^{2}B_{1} \rightarrow {}^{2}A_{1}$ of NO₂ molecules. This experimental result is in agreement with the theoretical calculation by Grangi et al^[14].

1.00

14